康普瑞汀脂质体体外抗乳腺癌拟态血管的作用

刘汉, 黄丹, 郭阳, 张烜

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (4) : 278-282.

PDF(2823 KB)
PDF(2823 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (4) : 278-282. DOI: 10.11669/cpj.2018.04.008
论著

康普瑞汀脂质体体外抗乳腺癌拟态血管的作用

  • 刘汉1, 黄丹2, 郭阳2, 张烜2*
作者信息 +

In Vitro Anticancer Effect of Combretastatin A4 Liposomes in Destruction of Vascular Mimicry in Triple-Negative Breast Cancer Cells

  • LIU Han1, HUANG Dan2, GUO Yang2, ZHANG Xuan2*
Author information +
文章历史 +

摘要

目的 考察康普瑞汀(combretastatin A4,CA4)脂质体(SSL-CA4)体外抗拟态血管(vascular mimicry,VM)的作用。方法 选择CA4为模型药物,构建SSL-CA4。选择MDA-MB-231乳腺癌为细胞模型,考察SSL-CA4对MDA-MB-231细胞的生长抑制作用、对MDA-MB-231细胞的划痕愈合作用、对MDA-MB-231细胞的体外拟态血管破坏作用、MDA-MB-231细胞的3种因子的拮抗作用等。结果 SSL-CA4具有体外抗MDA-MB-231细胞形成的拟态血管作用。结论 SSL-CA4可通过抗拟态血管作用而发挥其抗肿瘤作用。

Abstract

OBJECTIVE To investigate the potential anticancer effect of combretastatin A4 liposomes (SSL-CA4) in destruction of vascular mimicry (VM) in MDA-MB-231 breast cancer cells in vitro. METHODS The in vitro inhibitory effect and blocking wound-healing effect of SSL-CA4 were investigated. The VM destruction of SSL-CA4 was evaluated in three dimensional matrigel culture model in MDA-MB-231 cells. The in vitro inhibitory test showed that the maxium inhibition ratio of SSL-CA4 on MDA-MB-231 cells was close to 50%. SSL-CA4 blocked the wound-healing of MDA-MB-231 cells, which was similar to free CA4. RESULTS SSL-CA4 could inhibit the formation of VM in vitro via inhibition on the VM channel indicators including hypoxia-inducible factor (HIF-α), vascular endothelial-cadherin (VE-Cad), and matrix metallopeptidases (MMP-2). The inhibition on indicators of SSL-CA4 was significantly higher than CA4 treatment groups (P<0.05). CONCLUSION SSL-CA4 has significant anticancer activity via inhibition of VM in MDA-MB-231 cell line.

关键词

康普瑞汀脂质体 / MDA-MB-231细胞 / 拟态血管 / 抗肿瘤作用

Key words

combretastatin A4 liposomes / MDA-MB-231 cell line / vascular mimicry / anticancer efficacy

引用本文

导出引用
刘汉, 黄丹, 郭阳, 张烜. 康普瑞汀脂质体体外抗乳腺癌拟态血管的作用[J]. 中国药学杂志, 2018, 53(4): 278-282 https://doi.org/10.11669/cpj.2018.04.008
LIU Han, HUANG Dan, GUO Yang, ZHANG Xuan. In Vitro Anticancer Effect of Combretastatin A4 Liposomes in Destruction of Vascular Mimicry in Triple-Negative Breast Cancer Cells[J]. Chinese Pharmaceutical Journal, 2018, 53(4): 278-282 https://doi.org/10.11669/cpj.2018.04.008
中图分类号: R944   

参考文献

[1] TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015,65(2):87-108.
[2] ORTIZ-RUIZ M J, ALVAREZ-FERNANDEZ S, PARROTT T, et al. Therapeutic potential of ERK5 targeting in triple negative breast cancer[J]. Oncotarget, 2014,5(22):11308-11318.
[3] BAUER K R, BROWN M, CRESS R D, et al. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry[J]. Cancer, 2007,109(9):1721-1728.
[4] NAVRATIL J, FABIAN P, PALACOVA M, et al. Triple negative breast cancer[J]. Klin Onkol, 2015,28(6):405-415.
[5] LUAN Y Y, LIU Z M, ZHONG J Y, et al. Effect of grape seed proanthocyanidins on tumor vasculogenic mimicry in human triple-negative breast cancer cells[J]. Asian Pac J Cancer Prev, 2015,16(2):531-535.
[6] LIU T, SUN B, ZHAO X, et al. HER2/neu expression correlates with vasculogenic mimicry in invasive breast carcinoma[J]. J Cell Mol Med, 2013,17(1):116-122.
[7] ZHANG S, ZHANG D, SUN B. Vasculogenic mimicry: current status and future prospects[J]. Cancer Lett, 2007,254(2):157-164.
[8] ZHANG D, SUN B, ZHAO X, et al. Twist1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer[J]. Mol Cancer, 2014,13:207.
[9] LIU T J, SUN B C, ZHAO X L, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer[J]. Oncogene, 2013,32(5):544-553.
[10] KIRSCHMANN D A, SEFTOR E A, HARDY K M, et al. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications[J]. Clin Cancer Res, 2012,18(10):2726-2732.
[11] WEST C M, PRICE P. Combretastatin A4 phosphate[J]. Anticancer Drugs, 2004,15(3):179-187.
[12] GRIGGS J, METCALFE J C, HESKETH R. Targeting tumour vasculature: the development of combretastatin A4[J]. Lancet Oncol, 2001,2(2):82-87.
[13] HUANG D, ZHANG S, ZHONG T, et al. Multi-targeting NGR-modified liposomes recognizing glioma tumor cells and vasculogenic mimicry for improving anti-glioma therapy[J]. Oncotarget, 2016,7(28):43616-43628.
[14] ZHONG T, YAO X, ZHANG S, et al. A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic [J]. Sci Rep, 2016, 6:36614.
[15] HUANG Y, CHEN X M, ZHAO B X, et al. Antiangiogenic activity of sterically stabilized liposomes containing paclitaxel (SSL-PTX): in vitro and in vivo [J]. AAPS Pharm Sci Tech, 2010, 11(2):752-759.
[16] CAO Z, BAO M, MIELE L, et al. Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and Meta-analysis[J]. Eur J Cancer, 2013,49(18):3914-3923.
[17] LIU T J, SUN B C, ZHAO X L, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer[J]. Oncogene, 2013,32(5):544-553.
[18] ZENG F, JU R J, LIU L, et al. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer[J]. Oncotarget, 2015,6(34):36625-36642.
[19] QIAO L, LIANG N, ZHANG J, et al. Advanced research on vasculogenic mimicry in cancer[J]. J Cell Mol Med, 2015,19(2):315-326.
[20] PAULIS Y W, SOETEKOUW P M, VERHEUL H M, et al. Signalling pathways in vasculogenic mimicry[J]. Biochim Biophys Acta, 2010,1806(1):18-28.
[21] LIU X M, ZHANG Q P, MU Y G, et al. Clinical significance of vasculogenic mimicry in human gliomas[J]. J Neurooncol, 2011,105(2):173-179.
[22] SLINGERLAND M, GUCHELAAR H J, GELDERBLOM H. Liposomal drug formulations in cancer therapy: 15 years along the road[J]. Drug Discov Today, 2012,17(3-4):160-166.
[23] MARTINA M S, NICOLAS V, WILHELM C, et al. The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages[J]. Biomaterials, 2007,28(28):4143-4153.
[24] XIONG X B, HUANG Y, LU W L, et al. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic[J]. J Controlled Release, 2005,107(2):262-275.

基金

国家重点基础研究计划973资助项目(2013CB932501)
PDF(2823 KB)

Accesses

Citation

Detail

段落导航
相关文章

/